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Abstract. Recent developments in microprocessor technology have led to perfor- 
mance on scalar applications exceeding traditional supercomputers. This suggests 
that coupling hundreds or even thousands of these "killer-micros" (all working 
on a single physical problem) may lead to performance on vector applications in 
excess of vector supercomputers. Also, future generation killer-micros are ex- 
pected to have vector floating point units as well. The purpose of this paper is to 
present an overview of the parallel computing environment at Lawrence Liver- 
more National Laboratory.  However, the perspective is necessarily quite narrow 
and most of  the examples are taken from the author 's  implementation of a 
large-scale molecular dynamics code on the BBN-TC2000 at LLNL.  Parallelism 
is achieved through a geometric domain decompos i t i on -  each processor is 
assigned a distinct region of space and all atoms contained therein. As the atomic 
positions evolve, the processors must exchange ownership of specific atoms. This 
geometric domain decomposition proves to be quite general and we highlight its 
application to image processing and hydrodynamics simulations as well. 
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1. Introduction 

Figure 1 is taken from a talk Eugene D. Brooks I I I  presented at Supercomputing 
'90 entitled "Attack of the Killer-Micros." The figure is a plot of  relative 
performance (to a Cray-11) of  a single CPU versus the year the machine 
appeared. The plot for the conventional supercomputers 2 appears to level off 

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore 
National Laboratory under contract No. W-7405-ENG-48 
1 Cray-1 and Cray-YMP are trademarks of Cray Research Inc 
a A conventional superconductor is what we normally think of as a mainframe dedicated to crunching 
numbers. This type of machine is typified by the current generation Cray-YMP supercomputer 
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Fig. 1. A plot of the relative performance 
on a scalar application of a single cpu 
versus delivery date. The left hand curve is 
for conventional (mainframe) 
supercomputers, while the right hand side is 
for microprocessor based machines 

with respect to the logarithmic vertical axis, while the performance of micropro- 
cessors continues to increase exponentially with no end in sight. Current genera- 
tion microprocessors have increased 2 - 4  fold in performance during the time 
period since this figure was generated. These microprocessors are now at the 
performance limit set by the bandwidth to memory and we are observing 
hierarchical memory systems with fast (though still small) on chip cache, slower 
commodity local memory and slower-yet far away memory. This far away 
memory may belong to other processors with access through an interconnection 
network. Optimal programming of such machines involves migrating data to local 
memory before executing numerically intensive tasks. This performance limit due 
to memory bandwidth is being realized today with Intel i8603 based machines - 
we can not seem to keep the hungry micro fed! However, we anticipate that 
microprocessor manufacturers will soon take a lesson from the manufacturers of 
traditional supercomputers and introduce interleaved (on chip) memory systems. 
This interleaved memory should provide at least one order of magnitude 
improvement in memory bandwidth and help quench the hunger of today's 
generation killer-micros. Tomorrow's generation may require new solutions. 

2. LLNL's massively parallel computing initiative 

The goal of the Massively Parallel Computing Initiative (MPCI) at LLNL is to 
provide a research and development environment to aid in the design of 
algorithms (and code) that are scalable to highly parallel machines - machines 
with at least O(100) processors. The issue of scalability is central to the optimal 
use of parallel computers. For  example, an application that achieves 90% 
efficiency with 100 processors may only achieve 10-20% efficiency with 1000 
processors (Amdahal's law). In order to achieve 90% efficiency with 1000 
processors we must achieve 99% efficiency with 100 processors. The MPCI also 

3 i860 is a trademark of Intel Corp 
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provides a flexible programming environment with access to both shared mem- 
ory and message passing programming models. Furthermore, we recognize that 
the optimal implementation of a specific application onto a parallel machine 
requires intimate knowledge of the underlying physics. For this reason, the 
MPCI effort is leveraged through the participation of a large number of LLNL's 
research staff with only a small core staff required to support the programming 
models and the day-to-day maintenance of the machine. 4 

Our current development machine is the BBN TC2000. 5 The MPCI TC2000 
consists of 126 (plus two hot spares) fast RISC microprocessors (Motorola 
88100). Each processor is located on a separate board, along with 16 megabytes 
of local memory. The nodes are interconnected by a scalable "butterfly" switch. 
At boot time, some of each processor's local memory (6 megabytes) is allocated 
to an interleaved shared memory pool. It takes about four times longer to access 
this shared memory through the switch than to access private memory, local to 
the processor's board. Thus, an efficient computer code must use private memory 
for its computationally intensive tasks. 

The development system on the MPCI TC2000 is aimed at a multi-user and 
multi-tasking environment. A small number of nodes (8) are dedicated to a 
public cluster. These run the familiar UNIX operating system and perform the 
editing, compiling and job control that defines the user's interface to the 
machine. The remaining nodes (118) are assigned to a gang scheduled cluster. 
This is the cluster where parallel programs are executed. The gang schedular 
assures that each user's task is run is a timely and fair-share manner. The parallel 
programming tools on the machine consists of BBN's extensions to FORTRAN, 
the Parallel C Preprocessor (PCP) [1, 2] and its extension to FORTRAN (PFP), 
an implementation of message passing (LMPS) based upon the Argonne message 
passing system [3], and various utilities to monitor an executing program. We 
have chosen the C programming language for our variable particle molecular 
dynamics primarily because, as yet, the FORTRAN programming language does 
not support the constructs required for an efficient implementation. In this 
report, we explore the utility of interleaved shared memory and the PCP 
paradigm for the implementation of molecular dynamics algorithms. Message 
passing schemes for molecular dynamics are concurrently being explored on the 
TC2000 at LLNL by Tony DeGroot. 

PCP provides an extension of the single-program-multiple-data (SPMD) 
programming model in the familiar C programming language. Each processor 
executes the same code and flow control is placed into the hands of the 
programmer. PCP introduces the concept of a "team" of processors. A team 
may split into sub-teams in order to divide up work. Each team has one master 
processor. We find the master block (a section that only the master enters) most 
useful in performing serial work on shared memory - work that all processors 
must know about before the calculation can proceed. Flow synchronization is 
obtained through the barrier statement. Every processor reaching a barrier waits 
until all members of its team (including the master) reach that barrier. A fast 
waiting algorithm has been implemented for PCP runtime support. Additional 

4 For an overview of  all applications being developed through LLNL ' s  MPCI effort, the reader is 
referred to the MPCI annual  report (UCRL-ID-107022).  A copy may  be obtained by writing to: Chris 
Malone, MPCI L-416, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore CA 94550 
5 TC2000 is a t rademark of Bolt Beranek and Newman Inc 
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flow control for critical sections is accomplished with locks. A critical section is 
a region of the code in which many processors access the same resource and, to 
allow them to do so, would corrupt the results. Accumulating partial sums into 
a shared sum is a commonly encountered example. PCP provides the lock( &lock_ 
variable) and uulock(&lock.variahle) functions to isolate critical sections. The 
lock variable is stored in shared memory. The first processor entering the critical 
section sets the lock variable to locked and proceeds with the calculation. 
Meanwhile, the remaining processors test the lock variable to see whether it is 
locked. When the first processor finishes the calculation, it sets the lock variable 
to unlocked. The next processor to find it unlocked immediately locks it and 
proceeds with the calculation. 

Parallelism is accomplished with the forall loop. The for loop in C is similar 
to the do loop in FORTRAN. The forall loop divides the indices of a for loop 
evenly amongst the available processors. Each processor does the work for the 
value of the index it knows about. Possibly one of the most useful aspects of 
PCP is the transparent access to both shared and private memory. Declarations 
are made with the private and shared storage class modifiers and dynamical 
memory allocation is made using the prmalloc and shmalloe functions. 

3. Molecular dynamics modeling 

Molecular dynamics (MD) modeling is very simple in principle [4]. Given the 
positions of all of the atoms, calculate the force on each atom due to its neighbors 
and advance the positions with a finite difference integration scheme. Both 
predictor-corrector and central difference are commonly used. In our simulations, 
we employ an embedded atom method (EAM) [5] to express the forces between 
the atoms in a simple metal. The total potential energy is written as: 

with 

(l~total = 1 Z 49(r~) + ~ F(pi) (1) 
i,j i 

~, = ~ f(r¢).  (2) 
j v ~ i  

The first term is the usual two body interaction energy and the second term is the 
energy required to embed the atoms into the local electronic charge density (¢i). 
The Newtonian equations of motion for the embedded atom method are: 

d2xk 
m d t  ~ - Z (49 (rkj) + (g'(~k) 

j ~ k  

+ F,(Qj))f,(rki)) xk -- xj (3) 
rkj 

These equations are inherently nonlocal - they depend on both the embedding 
density ~k and ~j. They must be solved in a two step manner. The embedding 
density at all the atomic sites is evaluated first, then the forces may be evaluated. 
The equations are integrated by approximating the time derivative by a central 
difference: 

d2x x(t  + At) - 2x(t) + x ( t -  At) 
dt 2 ~ At 2 (4) 

with a time-step (At) of about 1/25 of the vibrational period (~E). 
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Fig. 2. A typical molecular dynamics 
simulation cell. The atom in the lower left 
hand corner has a circle surrounding it 
indicating the cut-off range used in short 
range potential models. The large 
simulation cell is subdivided into many 
small sub-cells, the size of which is 
determined by the interaction range. All 
atoms in the dark shaded (center) sub-cell 
interact with all atoms in the lighter shaded 
sub-cells 

The vast majority of computer time spent executing any molecular dynamics 
program is spent calculating forces. In order to understand parallel MD strate- 
gies, it is useful to review how forces are calculated. In this work, we consider 
only short ranged forces. The important class of long ranged forces (Coulomb 
forces) requires each atom to interact with every other atom and the implemen- 
tation onto parallel computers involves systollic loops [6]. Two methods have 
been developed to treat short ranged forces efficiently. In the first method, a list 
of neighbors within a cut-off distance (see Fig. 2) is maintained for every atom 
within the MD cell. However, the memory requirements of the method is 
prohibitively expensive for large system sizes. An alternative method is to 
subdivide the large computational cell into many small sub-cells. The size of 
these sub-cells is determined by the interaction cut-off [7]. Atoms within each 
sub-cell interact with atoms from neighboring sub-cells only (as shown in Fig. 2). 
In our initial implementation [8], we placed the entire problem into shared 
memory and parallelized over these sub-cells. A processor copies into its local 
memory the positions of all atoms from one sub-cell and its neighbors. It then 
proceeds to calculate forces. An advantage of this method is that the amount of 
available parallelism is always much greater than the number of processors. 
However, the efficiency is severely effected by the large amount of communica- 
tion taking place. In our current implementation, we assign a domain (a 
connected set of sub-cells) to each processor. That processor is responsible for all 
atoms within its domain and stores these positions in its local memory. At the 
start of a time step, the processor gathers from shared memory all information 
for sub-cells immediately outside its domain (see Fig. 3). This information is 
stored in local "phantom" sub-cells to be used in the force calculation. At the 
end of the time step, the processor stores into shared memory all information for 
sub-cells immediately inside the boundary of its domain. This is the information 
that neighboring processors require for the next time step. The same algorithm 
may be implemented within a message passing programming model. However, 
care must be taken with the corner sub-cells. These require two hops in the 
message passing for two dimensional simulations and three hops for three 
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Fig. 3. This figure illustrates the geometric 
domain decomposition of the large MD 
cell. A domain is a connected set of 
sub-cells. The darker shaded sub-cells 
belong to neighboring processors and 
represent information that must be gathered 
at the start of a time step. The lighter 
shaded sub-cells (inner boundary) represent 
information that must be communicated to 
neighboring processors at the end of each 
time step 
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Fig. 4. The parallel efficiency of our molecular 
dynamics algorithm running on 1-100 processors 
and a fixed system size of 32768 atoms, The linear 
fall off with processor count is characteristic of 
contention for a shared resource (e.g. an 
inter-communication network) 

d imens iona l  s imulat ions .  The  para l le l  efficiency o f  this a lgor i thm for a fixed 
system size (N = 32768) is shown in Fig. 4. The figure shows the generic form: 

1 
e =  

~comm 
l + - -  

t cale 

with tcalc ,.~ to/p (p  = # of  processors)  

tcomm 
1 - - -  (5)  

tcalc 

tcomm 
e ~ 1 - p - -  (6) 

to 

The  result ing efficiency (80% at 100 processors)  m a y  be improved  by increasing 
the system size (ava i labe  paral le l ism).  However ,  we suspect  tha t  there are still 
i m p o r t a n t  detai ls  concerning  communica t ion  t ime (t . . . . .  ) tha t  we need to finely 
tune. 

4. Image processing and hydrodynamics modeling 

The implemen ta t ion  o f  image  processing [9] and  hyd rodyna mic s  s imula t ions  [10] 
is via a s imilar  d o m a i n  decompos i t ion  scheme as has been out l ined for  molecu la r  
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Fig. 5. Two geometric 
domain decomposition 
schemes used in image 
processing. The upper 
figure demonstrates a fixed 
decomposition scheme 
while the lower figure 
demonstrates an adaptive 
decomposition scheme 

dynamics. During image rendering, the problem is first transformed into "image 
space," a coordinate system with one axis along the direction from the viewpoint 
(eye) to the object. The domain decomposition takes place in this image space. 
Each processor is assigned a collection of pixels and performs the rendering for 
all pixels within its domain (see top of Fig. 5). Unfortunately, fast algorithms 
that exploit nearest neighbor pixel information must be abandoned. Further- 
more, each processor must have access to the entire object space. For  most 
images, there are regions that require significantly more computational effort 
than others. In such cases, the efficiency may be improved by introducing an 
adaptive decomposition. This is illustrated at the bottom of  Fig. 5. The initial 
image space is decomposed into p domains. When a processor finishes all work 
for its domain, it queries the system for the domain with the most work 
remaining ( #  of pixels not rendered). It then divides that domain with the 
processor working on it. The process continues until the image is rendered. 
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Fig. 6. A geometric domain decomposition stencil 
commonly used in Eulerian hydrodynamics 
models. The 5-point stencil does not require 
corner data to be communicated across processors. 
Because the calculational work per node is small, 
care must be taken to minimize the interdomain 
communication 

Hydrodynamics simulations suffer a drawback not encountered in MD 
simulations. Unlike MD, the amount of work per node is typically small. 
Usually just the differencing on a fixed grid (see Fig. 6). Domain decomposition 
still proves useful for large scale applications such as global climate modeling. 
Because of the small calculation time, extra care must be taken to minimize 
interdomain communication. 

5. Conclusions 

Geometric domain decomposition schemes provide a common thread between 
the implementation of several distinct applications onto parallel computers. As 
our available parallel machines become larger (more nodes), we expect to study 
larger problems with high efficiency by maintaining a constant domain size per 
processor. For molecular dynamics simulations, this means larger length scales 
but NOT longer time scales. The time step is limited by the clock cycle of the 
processor and we should never expect to obtain more than one time step per 
clock cycle. Hydrodynamics provides a two-fold problem. Typically, the size of 
the problem is fixed (the entire earth in the global climate modeling) and the 
additional parallelism is used to improve resolution so that the number of finite 
element nodes per domain remains fixed. Unfortunately, the "size" of the node 
determines the time step via the Courant condition- small nodes demand 
smaller time steps. Thus, the computational work (number of time steps) 
required to simulate a fixed period of time (say 100 years) will always increase! 
There are additional problems that we have not discussed in detail. For example, 
how long does it take to load one of these large problems into memory? It seems 
silly to spend several hours loading an application that might run for a few 
minutes! 
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