
Theor Chim Acta (1993) 84:315-323 Theoretica
Chimica Acta
© Springer-Verlag 1993

Harnessing the killer micros: Applications from LLNL's
massively parallel computing initiative*

James Belak
Massively Parallel Computing Initiative, University of California, Lawrence Livermore National
Laboratory, Livermore, CA 94550, USA

Received October 1, 1991/Accepted December 16, 1991

Abstract. Recent developments in microprocessor technology have led to perfor-
mance on scalar applications exceeding traditional supercomputers. This suggests
that coupling hundreds or even thousands of these "killer-micros" (all working
on a single physical problem) may lead to performance on vector applications in
excess of vector supercomputers. Also, future generation killer-micros are ex-
pected to have vector floating point units as well. The purpose of this paper is to
present an overview of the parallel computing environment at Lawrence Liver-
more National Laboratory. However, the perspective is necessarily quite narrow
and most of the examples are taken from the author 's implementation of a
large-scale molecular dynamics code on the BBN-TC2000 at LLNL. Parallelism
is achieved through a geometric domain decompos i t i on - each processor is
assigned a distinct region of space and all atoms contained therein. As the atomic
positions evolve, the processors must exchange ownership of specific atoms. This
geometric domain decomposition proves to be quite general and we highlight its
application to image processing and hydrodynamics simulations as well.

Key words: Killer micros - MPCI - Vector applications

1. Introduction

Figure 1 is taken from a talk Eugene D. Brooks I I I presented at Supercomputing
'90 entitled "Attack of the Killer-Micros." The figure is a plot of relative
performance (to a Cray-11) of a single CPU versus the year the machine
appeared. The plot for the conventional supercomputers 2 appears to level off

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore
National Laboratory under contract No. W-7405-ENG-48
1 Cray-1 and Cray-YMP are trademarks of Cray Research Inc
a A conventional superconductor is what we normally think of as a mainframe dedicated to crunching
numbers. This type of machine is typified by the current generation Cray-YMP supercomputer

316 J. Belak

Multiprocessing T e r r i t o r y

~ ' ~ ~ ,
o

, a t / "~"

1950 1960 1970 1980 1990 2000

Year of ar r iva l

Fig. 1. A plot of the relative performance
on a scalar application of a single cpu
versus delivery date. The left hand curve is
for conventional (mainframe)
supercomputers, while the right hand side is
for microprocessor based machines

with respect to the logarithmic vertical axis, while the performance of micropro-
cessors continues to increase exponentially with no end in sight. Current genera-
tion microprocessors have increased 2 - 4 fold in performance during the time
period since this figure was generated. These microprocessors are now at the
performance limit set by the bandwidth to memory and we are observing
hierarchical memory systems with fast (though still small) on chip cache, slower
commodity local memory and slower-yet far away memory. This far away
memory may belong to other processors with access through an interconnection
network. Optimal programming of such machines involves migrating data to local
memory before executing numerically intensive tasks. This performance limit due
to memory bandwidth is being realized today with Intel i8603 based machines -
we can not seem to keep the hungry micro fed! However, we anticipate that
microprocessor manufacturers will soon take a lesson from the manufacturers of
traditional supercomputers and introduce interleaved (on chip) memory systems.
This interleaved memory should provide at least one order of magnitude
improvement in memory bandwidth and help quench the hunger of today's
generation killer-micros. Tomorrow's generation may require new solutions.

2. LLNL's massively parallel computing initiative

The goal of the Massively Parallel Computing Initiative (MPCI) at LLNL is to
provide a research and development environment to aid in the design of
algorithms (and code) that are scalable to highly parallel machines - machines
with at least O(100) processors. The issue of scalability is central to the optimal
use of parallel computers. For example, an application that achieves 90%
efficiency with 100 processors may only achieve 10-20% efficiency with 1000
processors (Amdahal's law). In order to achieve 90% efficiency with 1000
processors we must achieve 99% efficiency with 100 processors. The MPCI also

3 i860 is a trademark of Intel Corp

Killer micros: LLNL's MPCI 317

provides a flexible programming environment with access to both shared mem-
ory and message passing programming models. Furthermore, we recognize that
the optimal implementation of a specific application onto a parallel machine
requires intimate knowledge of the underlying physics. For this reason, the
MPCI effort is leveraged through the participation of a large number of LLNL's
research staff with only a small core staff required to support the programming
models and the day-to-day maintenance of the machine. 4

Our current development machine is the BBN TC2000. 5 The MPCI TC2000
consists of 126 (plus two hot spares) fast RISC microprocessors (Motorola
88100). Each processor is located on a separate board, along with 16 megabytes
of local memory. The nodes are interconnected by a scalable "butterfly" switch.
At boot time, some of each processor's local memory (6 megabytes) is allocated
to an interleaved shared memory pool. It takes about four times longer to access
this shared memory through the switch than to access private memory, local to
the processor's board. Thus, an efficient computer code must use private memory
for its computationally intensive tasks.

The development system on the MPCI TC2000 is aimed at a multi-user and
multi-tasking environment. A small number of nodes (8) are dedicated to a
public cluster. These run the familiar UNIX operating system and perform the
editing, compiling and job control that defines the user's interface to the
machine. The remaining nodes (118) are assigned to a gang scheduled cluster.
This is the cluster where parallel programs are executed. The gang schedular
assures that each user's task is run is a timely and fair-share manner. The parallel
programming tools on the machine consists of BBN's extensions to FORTRAN,
the Parallel C Preprocessor (PCP) [1, 2] and its extension to FORTRAN (PFP),
an implementation of message passing (LMPS) based upon the Argonne message
passing system [3], and various utilities to monitor an executing program. We
have chosen the C programming language for our variable particle molecular
dynamics primarily because, as yet, the FORTRAN programming language does
not support the constructs required for an efficient implementation. In this
report, we explore the utility of interleaved shared memory and the PCP
paradigm for the implementation of molecular dynamics algorithms. Message
passing schemes for molecular dynamics are concurrently being explored on the
TC2000 at LLNL by Tony DeGroot.

PCP provides an extension of the single-program-multiple-data (SPMD)
programming model in the familiar C programming language. Each processor
executes the same code and flow control is placed into the hands of the
programmer. PCP introduces the concept of a "team" of processors. A team
may split into sub-teams in order to divide up work. Each team has one master
processor. We find the master block (a section that only the master enters) most
useful in performing serial work on shared memory - work that all processors
must know about before the calculation can proceed. Flow synchronization is
obtained through the barrier statement. Every processor reaching a barrier waits
until all members of its team (including the master) reach that barrier. A fast
waiting algorithm has been implemented for PCP runtime support. Additional

4 For an overview of all applications being developed through LLNL ' s MPCI effort, the reader is
referred to the MPCI annual report (UCRL-ID-107022). A copy may be obtained by writing to: Chris
Malone, MPCI L-416, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore CA 94550
5 TC2000 is a t rademark of Bolt Beranek and Newman Inc

318 J. Belak

flow control for critical sections is accomplished with locks. A critical section is
a region of the code in which many processors access the same resource and, to
allow them to do so, would corrupt the results. Accumulating partial sums into
a shared sum is a commonly encountered example. PCP provides the lock(&lock_
variable) and uulock(&lock.variahle) functions to isolate critical sections. The
lock variable is stored in shared memory. The first processor entering the critical
section sets the lock variable to locked and proceeds with the calculation.
Meanwhile, the remaining processors test the lock variable to see whether it is
locked. When the first processor finishes the calculation, it sets the lock variable
to unlocked. The next processor to find it unlocked immediately locks it and
proceeds with the calculation.

Parallelism is accomplished with the forall loop. The for loop in C is similar
to the do loop in FORTRAN. The forall loop divides the indices of a for loop
evenly amongst the available processors. Each processor does the work for the
value of the index it knows about. Possibly one of the most useful aspects of
PCP is the transparent access to both shared and private memory. Declarations
are made with the private and shared storage class modifiers and dynamical
memory allocation is made using the prmalloc and shmalloe functions.

3. Molecular dynamics modeling

Molecular dynamics (MD) modeling is very simple in principle [4]. Given the
positions of all of the atoms, calculate the force on each atom due to its neighbors
and advance the positions with a finite difference integration scheme. Both
predictor-corrector and central difference are commonly used. In our simulations,
we employ an embedded atom method (EAM) [5] to express the forces between
the atoms in a simple metal. The total potential energy is written as:

with

(l~total = 1 Z 49(r~) + ~ F(pi) (1)
i,j i

~, = ~ f(r¢). (2)
j v ~ i

The first term is the usual two body interaction energy and the second term is the
energy required to embed the atoms into the local electronic charge density (¢i).
The Newtonian equations of motion for the embedded atom method are:

d2xk
m d t ~ - Z (49 (rkj) + (g'(~k)

j ~ k

+ F,(Qj))f,(rki)) xk -- xj (3)
rkj

These equations are inherently nonlocal - they depend on both the embedding
density ~k and ~j. They must be solved in a two step manner. The embedding
density at all the atomic sites is evaluated first, then the forces may be evaluated.
The equations are integrated by approximating the time derivative by a central
difference:

d2x x(t + At) - 2x(t) + x (t - At)
dt 2 ~ At 2 (4)

with a time-step (At) of about 1/25 of the vibrational period (~E).

Killer micros: LLNL's MPCI 319

0 O@ . j 0 Q o o Oo%& o
O1 r-,,

0 ' V O
o o

c q,9]mr
Fig. 2. A typical molecular dynamics
simulation cell. The atom in the lower left
hand corner has a circle surrounding it
indicating the cut-off range used in short
range potential models. The large
simulation cell is subdivided into many
small sub-cells, the size of which is
determined by the interaction range. All
atoms in the dark shaded (center) sub-cell
interact with all atoms in the lighter shaded
sub-cells

The vast majority of computer time spent executing any molecular dynamics
program is spent calculating forces. In order to understand parallel MD strate-
gies, it is useful to review how forces are calculated. In this work, we consider
only short ranged forces. The important class of long ranged forces (Coulomb
forces) requires each atom to interact with every other atom and the implemen-
tation onto parallel computers involves systollic loops [6]. Two methods have
been developed to treat short ranged forces efficiently. In the first method, a list
of neighbors within a cut-off distance (see Fig. 2) is maintained for every atom
within the MD cell. However, the memory requirements of the method is
prohibitively expensive for large system sizes. An alternative method is to
subdivide the large computational cell into many small sub-cells. The size of
these sub-cells is determined by the interaction cut-off [7]. Atoms within each
sub-cell interact with atoms from neighboring sub-cells only (as shown in Fig. 2).
In our initial implementation [8], we placed the entire problem into shared
memory and parallelized over these sub-cells. A processor copies into its local
memory the positions of all atoms from one sub-cell and its neighbors. It then
proceeds to calculate forces. An advantage of this method is that the amount of
available parallelism is always much greater than the number of processors.
However, the efficiency is severely effected by the large amount of communica-
tion taking place. In our current implementation, we assign a domain (a
connected set of sub-cells) to each processor. That processor is responsible for all
atoms within its domain and stores these positions in its local memory. At the
start of a time step, the processor gathers from shared memory all information
for sub-cells immediately outside its domain (see Fig. 3). This information is
stored in local "phantom" sub-cells to be used in the force calculation. At the
end of the time step, the processor stores into shared memory all information for
sub-cells immediately inside the boundary of its domain. This is the information
that neighboring processors require for the next time step. The same algorithm
may be implemented within a message passing programming model. However,
care must be taken with the corner sub-cells. These require two hops in the
message passing for two dimensional simulations and three hops for three

320 J. Belak

iiii

 iiiiii ii
iii!!i~:~i

y !li!iiiiiiilll iiii[Niiiiiit!iN iiiiiii
N II .I N

N I / I N

,...,...,
~iiiiiiiii

!iiiiii~i!
i~iiiiiii
.........
:i:!:i:i:
::::::::.
:::::::::

~ii~iii!il
iiiii!i~i .:.:.:.:
i:i:?:i:i

:::::::::

Fig. 3. This figure illustrates the geometric
domain decomposition of the large MD
cell. A domain is a connected set of
sub-cells. The darker shaded sub-cells
belong to neighboring processors and
represent information that must be gathered
at the start of a time step. The lighter
shaded sub-cells (inner boundary) represent
information that must be communicated to
neighboring processors at the end of each
time step

1

0 . 8

.,2 0.6

O
0 , , t -

number of processors

Fig. 4. The parallel efficiency of our molecular
dynamics algorithm running on 1-100 processors
and a fixed system size of 32768 atoms, The linear
fall off with processor count is characteristic of
contention for a shared resource (e.g. an
inter-communication network)

d imens iona l s imulat ions . The para l le l efficiency o f this a lgor i thm for a fixed
system size (N = 32768) is shown in Fig. 4. The figure shows the generic form:

1
e =

~comm
l + - -

t cale

with tcalc ,.~ to/p (p = # of processors)

tcomm
1 - - - (5)

tcalc

tcomm
e ~ 1 - p - - (6)

to

The result ing efficiency (80% at 100 processors) m a y be improved by increasing
the system size (ava i labe paral le l ism). However , we suspect tha t there are still
i m p o r t a n t detai ls concerning communica t ion t ime (t) tha t we need to finely
tune.

4. Image processing and hydrodynamics modeling

The implemen ta t ion o f image processing [9] and hyd rodyna mic s s imula t ions [10]
is via a s imilar d o m a i n decompos i t ion scheme as has been out l ined for molecu la r

Killer micros: LLNL's MPCI 321

I [l l l l l l l l a ~ 1 J F I [l ~ i ~
11

. . . . i . i i i i i I li21i -T.

111 I I I I I I I I I l t l r T I I I l l l i i t

Fig. 5. Two geometric
domain decomposition
schemes used in image
processing. The upper
figure demonstrates a fixed
decomposition scheme
while the lower figure
demonstrates an adaptive
decomposition scheme

dynamics. During image rendering, the problem is first transformed into "image
space," a coordinate system with one axis along the direction from the viewpoint
(eye) to the object. The domain decomposition takes place in this image space.
Each processor is assigned a collection of pixels and performs the rendering for
all pixels within its domain (see top of Fig. 5). Unfortunately, fast algorithms
that exploit nearest neighbor pixel information must be abandoned. Further-
more, each processor must have access to the entire object space. For most
images, there are regions that require significantly more computational effort
than others. In such cases, the efficiency may be improved by introducing an
adaptive decomposition. This is illustrated at the bottom of Fig. 5. The initial
image space is decomposed into p domains. When a processor finishes all work
for its domain, it queries the system for the domain with the most work
remaining (# of pixels not rendered). It then divides that domain with the
processor working on it. The process continues until the image is rendered.

322

Outer Border Inner Border

J. Belak

5-Point Stencil

Fig. 6. A geometric domain decomposition stencil
commonly used in Eulerian hydrodynamics
models. The 5-point stencil does not require
corner data to be communicated across processors.
Because the calculational work per node is small,
care must be taken to minimize the interdomain
communication

Hydrodynamics simulations suffer a drawback not encountered in MD
simulations. Unlike MD, the amount of work per node is typically small.
Usually just the differencing on a fixed grid (see Fig. 6). Domain decomposition
still proves useful for large scale applications such as global climate modeling.
Because of the small calculation time, extra care must be taken to minimize
interdomain communication.

5. Conclusions

Geometric domain decomposition schemes provide a common thread between
the implementation of several distinct applications onto parallel computers. As
our available parallel machines become larger (more nodes), we expect to study
larger problems with high efficiency by maintaining a constant domain size per
processor. For molecular dynamics simulations, this means larger length scales
but NOT longer time scales. The time step is limited by the clock cycle of the
processor and we should never expect to obtain more than one time step per
clock cycle. Hydrodynamics provides a two-fold problem. Typically, the size of
the problem is fixed (the entire earth in the global climate modeling) and the
additional parallelism is used to improve resolution so that the number of finite
element nodes per domain remains fixed. Unfortunately, the "size" of the node
determines the time step via the Courant condition- small nodes demand
smaller time steps. Thus, the computational work (number of time steps)
required to simulate a fixed period of time (say 100 years) will always increase!
There are additional problems that we have not discussed in detail. For example,
how long does it take to load one of these large problems into memory? It seems
silly to spend several hours loading an application that might run for a few
minutes!

Acknowledgements. It is a pleasure to acknowledge Eugene D. Brooks III and all of the MPCI core
staff for providing an efficient parallel computing environment to work within.

References

1. Brooks III ED (1988) PCP: A parallel extension of C that is 99% fat free. Lawrence Livermore
Natl Lab Report UCRL-99673

Killer micros: LLNL's MPCI 323

2. Gorda B, Warren K, Brooks III ED (1990) Programming in PCP. Lawrence Livermore Natl Lab
Report UCRL-MA-107029

3. Welcome T (1990) Programming in LMPS. Lawrence Livermore Natl Lab Report UCRL-MA-
107031

4. For advanced details of molecular dynamics modeling see: Heerman DW (1989) Computer
simulation methods in theoretical physics, Second edn (Springer-Verlag, Berlin); Allen MP,
Tildesley DJ (1987) Computer simulation of liquids. Oxford Univ Press, Oxford

5. Daw MS, Baskes MI (1984) Embedded atom method: Derivation and application to impurities,
surfaces, and other defects in metals, Phys Rev B 29:6443

6. Fincham D (1987) Parallel computers and molecular simulation, Molecular Simulation 1:1
7. Rapaport DC (1988) Large-scale molecular dynamics simulation using vector and parallel

computers. Computer Phys Reports 9:1
8. Belak J (1991) A parallel implementation of a molecular dynamics algorithm using the PCP

programming paradigm and its application to orthogonal metal cutting, in: The 1991 MPCI
Yearly Report, UCRL-ID-107022, Lawrence Livermore Natl Lab

9. Whitman S, Sadayappan P (1991) Computer graphics rendering on a shared memory multipro-
cessor, in: The 1991 MPCI Yearly Report, UCRL-ID-107022, Lawrence Livermore Natl Lab

I0. Procassine RJ, Dannevik WP (1991) A shared-memory implementation of a global ocean model
on a MIMD parallel computer, in: The 199l MPCI Yearly Report, UCRL-ID-107022, Lawrence
Livermore Natl Lab

